skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Fengyuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract MotivationCell communication is predominantly governed by secreted proteins, whose diverse secretion patterns often signify underlying physiological irregularities. Understanding these secreted signals at an individual cell level is crucial for gaining insights into regulatory mechanisms involving various molecular agents. To elucidate the array of cell secretion signals, which encompass different types of biomolecular secretion cues from individual immune cells, we introduce the secretion-signal map (S2Map). ResultsS2Map is an online interactive analytical platform designed to explore and interpret distinct cell secretion-signal patterns visually. It incorporates two innovative qualitative metrics, the signal inequality index and the signal coverage index, which are exquisitely sensitive in measuring dissymmetry and diffusion of signals in temporal data. S2Map’s innovation lies in its depiction of signals through time-series analysis with multi-layer visualization. We tested the SII and SCI performance in distinguishing the simulated signal diffusion models. S2Map hosts a repository for the single-cell’s secretion-signal data for exploring cell secretio-types, a new cell phenotyping based on the cell secretion signal pattern. We anticipate that S2Map will be a powerful tool to delve into the complexities of physiological systems, providing insights into the regulation of protein production, such as cytokines at the remarkable resolution of single cells. Availability and implementationThe S2Map server is publicly accessible via https://au-s2map.streamlit.app/. 
    more » « less